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Abstract
The dynamical behaviour of an entangled network,a melt made of long polymer
chains, with an oscillating nanotip, is investigated to provide evidence for
a close relationship between the spatial scale and dynamics of the network,
from the molecular to the mesoscopic scale. The experimental results show
how a dynamic force microscope is able to discriminate between slow and
fast relaxation processes related to molecular motion at different scales. In
particular, it is shown that within a very small variation of the tip indentation
depth, a few ångströms, the relaxation times involved in the process of
dissipation vary by more than three orders of magnitude.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The dynamics of flexible polymer chains in a melt provides a unique combination of viscous
and elastic behaviour, in particular when the chains are long enough to build an entangled
network [1]. Viscous properties are dependent on the timescale and spatial scale of observation.
There is a close relationship between the spatial scale and the dynamics of the flexible long
chains. In general, the fast dynamics corresponds to motion on a small scale, while the slow
dynamics reflects the motion over a larger spatial scale. These features, influenced by the
chain connectivity, are very similar for polymer chains of various chemical structures. This
universality leads to dynamic scaling laws for a polymer melt that may also be useful for
understanding the viscoelastic behaviour at the nanometre scale.

A polymer melt is a network made of physical entanglements with an average distance ξ

between entanglements. When spheres of diameter φ < ξ move in the network, only a few
monomer units are involved in the motion and the mobility is high. For φ > ξ , the sphere
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motion involves the chain connectivity, and the mobility is expected to decrease drastically [2].
Therefore even for a sphere diameter of a few nanometres, the viscosity must rise to reach
a value close to the macroscopic value. Similarly, the viscoelastic response should exhibit a
sharp dependence as a function of the spatial scale.

The present work is based on the idea of immersing small oscillating particles of different
sizes, then relating changes of the oscillation behaviour of the particles to the viscoelastic
properties of the medium. To do this, a dynamic force microscope is used, adopting the
conceptually simple idea that the variation of the contact area between the tip and the sample
as a function of the tip indentation depth is similar to the variation of the radius of a sphere.

2. Material and method

The experiments were performed with an atomic force microscope in the dynamic mode
using the frequency modulation technique (FM-AFM) [3–6]. With a FM-AFM, the oscillation
amplitude of the cantilever is kept constant and the driving force needed to keep this oscillation
amplitude constant provides a direct measurement of the damping coefficient. Technically,
the additional force that preserves a stationary state of the nanotip oscillation is given by the
error signal, or damping signal, of the automatic gain control (AGC) [6]. The damping signal
gives the amount of additional energy dissipated in the medium as a function of the indentation
depth and in turn provides information on its viscoelastic properties.

The tip–surface interaction governs the oscillation behaviour of the AFM; thus it is a
function of the size and shape of the tip. Therefore, when one wants to perform comparative
studies, it is necessary to keep the tip size constant throughout the experiment. In the present
study, because at long timescales a polymer melt behaves as a liquid, we need to avoid any
wetting of the tip with the polymer chains. The long time behaviour of an entangled network
is determined by the reptation time of the chain inside the network. The reptation time scales
like τrep ≈ M3.6

w [1], where Mw is the molecular weight of the chain, so τrep is often larger
than a millisecond [1]. Therefore, when the AFM tip oscillates at a frequency of a hundred
kilohertz, the time during which the tip remains in the network is no greater than a microsecond
and the polymer never has time to cover the tip as happens with the AFM static mode [7].

As shown in preceding papers [8, 9], with the constant frequency mode (also called the
tapping mode), the quality factor is a key parameter. In particular, the effective surface local
stiffness is proportional to the product of the quality factor and the local stiffness. Therefore,
with a high quality factor, even a soft sample may appear as a hard one and the tapping mode
becomes inappropriate for investigating a wide range of tip indentation depths. In contrast,
the FM-AFM keeps the oscillation amplitude constant at any indentation depth as long as
the AGC electronic loop is able to provide the additional energy [6]. When this condition is
fulfilled, the conservative forces, through the resonance frequency shift, and the dissipating
forces, through the change of the damping signal [4–6], are separately and simultaneously
recorded. The machine is a hybrid one, with which either the FM-AFM or the tapping mode
can be used [6]. The cantilever has a resonance frequency of 175 kHz and a supersharp tip,
SSS-NCL. A supersharp tip is identified by having an apex radius of about 3–5 nm [10]. In
the present work, the size of the tip is evaluated in situ by recording an approach curve, in
the tapping mode, in air on a silica surface heated to 400 ◦C to eliminate the water layer [11].
From the approach curves it is deduced that the SSS-NCL tips were always smaller than
the usual ones, referred to as NCL, used for tapping or non-contact AFM. A good NCL tip,
i.e. one with a small radius at the apex, shows a transition from a dominant repulsive regime
to an attractive one with a oscillation amplitude ranging between 5 and 10 nm (see [8] for
more detailed information). When the dominant attractive regime occurs with an oscillation
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Figure 1. A typical normalized damping curve recorded when the tip was dipped into the
polyisoprene. The x axis gives the indentation depth δ; γ0 is the damping coefficient of the
AFM oscillator when the tip is far from the surface. The measured damping coefficient γtot follows
the linear relationship γtot = γ0 + γint . The oscillation amplitude is A = 50 nm. Three regimes are
identified as shown with the scheme of an entangled polymer network.

amplitude larger than 10 nm, since the effective time during which the tip interacts with the
surface scales as

√
1/A (see below), this result means that the size of the tip is large enough

to make the attractive regime dominant even at a rather large amplitude. In that case the
cantilever is removed. With an SSS-NCL, the transition between the two regimes often occurs
with oscillation amplitudes smaller than 5 nm. Note that this method is helpful for verifying
that the size of the tip does not vary over the whole experiment.

Experiments are performed in a secondary vacuum (2×10−7 Torr) providing a high quality
factor, Q = 23 000, when the tip does not interact with a surface. So high a quality factor
gives a sensitivity on the damping curve of about kBT with T = 300 K and kB the Boltzmann
constant.

The polymer network used was a polyisoprene of molecular weight Mw = 205 kDa with
a polydispersity Mw/Mn = 1.05. The glass transition temperature is 200 K, the melting
temperature 308 K [12]—close to that of the present experiment: 303 K. Since the sample
behaves as a liquid, a small basin was used to avoid a flow of the polymer during the experiment.

The experiments were as follows. For a given oscillation amplitude we recorded an
approach curve at a fixed X , Y location on the surface. The approach curve was obtained by
moving the sample along the vertical axis Z . For each curve, the duration was 10 s with a total
vertical displacement varying between 20 and 40 nm. Typical variations of the normalized
damping signal versus the tip indentation are shown in figure 1. We only know the vertical
displacement of the surface; thus the absolute value of the distance between the tip and the
sample can only be evaluated with a model. The absolute value is deduced from a fit of the
resonance frequency shift curve in the attractive regime with an analytical expression taking
into account the van der Waals interaction [13] (figure 2). The uncertainty, estimated as a few
ångströms, is negligible compared to values of the indentation depths.

3. Experimental results and analysis

When the tip dips into the melt, the damping coefficient γtot becomes the sum of the
intrinsic damping coefficient γ0 and the damping coefficient γint related to the additional
dissipation [14–16]. The damping coefficient γint is an explicit function of the indentation
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Figure 2. Variation of the resonance frequency shift (left) and of the damping signal (right) as
a function of the tip–surface distance. The resonance frequency ν0 is subtracted; the oscillation
amplitude is A = 25 nm. The location of the surface, corresponding to a null indentation, is
determined with a fit of the resonance frequency shift curve (inset). The continuous curve is a
theoretical curve in which only the attractive interaction is considered [13].

depth δ: γint = γint(δ). The damping curves show three domains (figures 1 and 3). At
small indentation, the dissipation is rather low and increases smoothly, then follows an abrupt
increase within a few ångströms’ variation. At larger indentations, the last part of the curves
again increases smoothly or exhibits a plateau-like behaviour. A qualitative explanation of this
non-regular behaviour can be readily given as follows: the low part of the curve corresponds
to dissipation processes that only involve motion of segment chains with lengths smaller than
the entanglement length. Then, the abrupt increase corresponds to indentation that involves
entanglements, and the last part includes contributions due to significant disentanglements of
the network. Since at large indentation depths disentanglements of the network occur, one
needs to wait 5–10 min to recover a similar curve at the same X , Y location. Consequently, to
avoid measurements in a strongly modified network structure, after each curve had been taken
the surface was laterally displaced along either the X or Y axis; then a new damping curve
was recorded with another oscillation amplitude. Damping curves recorded at four oscillation
amplitudes are displayed in figure 4.

In this paper, we focus the analysis on the transition between the low part of the curve
and the sharp increase. Starting from these experimental results, it is worth discussing first
some technical aspects related to a nanorheological experiment performed with an AFM. In
general, when one wants to investigate the viscoelastic properties of a material, it is very
common to vary the excitation frequency or the shear rate. When an AFM cantilever is used,
the available frequency range is limited and centred at the mechanical resonance frequency
of the cantilever; nevertheless it remains possible to vary the shear rate through change of the
oscillation amplitude. Typically, the time during which the tip dips into the network, hereafter
called the residence time τres, to first order expansion scales as τres ∼ T

√
δ/A where T is the

oscillation period and A the oscillation amplitude. Consequently, for the same value of the
indentation depth, the use of different oscillation amplitudes gives different residence times of
the tip in the melt; in turn, this provides a way to discriminate between fast and slow relaxation
processes.
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Figure 3. Several damping curves recorded at two different locations in the (X, Y ) plane for
different oscillation amplitudes. In a few cases the curves show a dispersed behaviour at the values
of the indentation depth where the transition between the different regimes occurs. Whatever the
location, the general features remain the same in agreement with the tapping images recorded in
air showing an homogeneous mechanical behaviour [9].

We face a few difficulties in attempting to accurately describe the dipping process of
an oscillating nanotip in a viscoelastic material. First, the sample excitation is made up of
pulses of width τres and the indentation depth temporal function is δ(t) = A cos(ωt) − D for
t ∈ [−τres/2, τres/2] and δ(t) = 0 elsewhere, where D is the distance between the surface and
the tip at rest and with the condition A > D. Therefore a Fourier series is required to describe
the shear rate induced by the oscillating tip. Second, because a quantitative analysis of the
additional dissipation due to a viscoelastic medium or a viscous fluid requires an accurate
knowledge of the tip shape and size at the nanometre scale [15], an accurate description of
the deformation gradient induced by the tip motion is far from being obvious. To avoid this
latter complication, a phenomenological approach is chosen, in which the tip motion induces
a simple shear deformation.

Similarly to what was done for the calculation of the dissipation induced by the growth
of a nanoprotuberance [16], we use an elementary Maxwell model to predict the general
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Figure 4. The damping curves are recorded at different X , Y locations in the sample for four
oscillation amplitudes A = 25, 40, 50 and 75 nm. At a given indentation depth, the variation of
the oscillation amplitude induces change of the residence time in the polymer. A consequence is
that the transition between the two regimes occurs at different indentation depths.

trends [17]. The Maxwell unit is built with a dashpot and a spring in series. When an
oscillating shear is applied, the constraint σ required to maintain a stationary oscillation is
σ(t) = − ∫ t

−∞ G(t−t ′)γ̇ (t ′) dt ′ with G(t) = η/τs exp(−t/τs) the material relaxation modulus,
τs the sample relaxation time, γ̇ the shear rate and η the zero frequency viscosity.

A first step is the evaluation of the deformation gradient γ and the associated shear rate
γ̇ generated by the tip motion. Here we set γ ∼ δ/φ and γ̇ ∼ δ̇/φ, where φ is the diameter
of the area of the contact between the tip and the polymer. Such an approximation means
that the induced deformation vanishes over the length φ. Thus a nanorheological experiment
gives a large deformation gradient of about the unity and, since the residence time is around the
microsecond, the shear rate is also large with γ̇ ∼ 106 s−1. While this value is rather large when
it is compared to what can be done with rheological experiments performed at a macroscopic
scale, it remains a small value for usual timescales in the nanometre domain [16, 18]. For
example, in [15] it was demonstrated that for a complex fluid, because of the nanometre scale
size, the fact that the tip vibrates at 200 kHz does not matter and the Stokes equation applies.
Similarly, for a viscoelastic medium one can demonstrate that the contributions of acoustic
waves and phonons are negligible [16, 18]. The main physical reason is that the volume of
material investigated is too small and the oscillation frequency is too low. For example, even
with a very large tip of micrometre size, one needs an oscillator vibrating at the gigahertz level
to obtain a detectable amount of damping signal related to acoustic waves. Therefore, only
viscous processes such as those investigated in the present work are able to contribute to the
damping signal, provided that their timescales are within the range of the characteristic times
of the AFM oscillator as discussed below.

The next step is to calculate the additional energy loss per period:

Ediss
T = S

∫ T

0
σ(t)δ̇ dt (1)



Scales of space and time in an entangled polymer network 6173

where S is the contact surface scaling like the product φδ. Note that the choice of the shape
of the tip, spherical or conical, and the choice of the expression for the deformation gradient
γ have an influence on the δ power law of the additional energy loss but not on the A power
law. Since, in this work, we are mostly concerned with the A power law dependence, the
assumptions given above are not of primary importance. Applying the Fourier transform and
after some calculations using the relation η′(ω) = G ′′(ω)/ω with G ′′ the loss modulus [17]
and the expression for the total energy dissipated per period Ediss

T = πω(γ0 + γint)A2 one gets
the general result, omitting numerical factors:

γint ∝ δ

(ωA)2

∞∑
n=1

η′(nω)δ̇2
n (2)

where η′(nω) = η/(1 + (τsnω)2) is the real part of the complex viscosity at the frequency nω

and δ̇n = δnnω are the Fourier components of δ̇(t); ω = 2π/T is the frequency cycle of the
AFM oscillator of oscillation period T . Note that η′δ scales as the friction coefficient γ at the
indentation depth δ.

One has to calculate the Fourier components δ̇n, then evaluate the sum in equation (2).
An exact calculation can only be performed numerically (see below). However, useful
analytical expressions are obtained by making assumptions similar to those given in [16].
A first one consists in replacing the Fourier components δn by the product δτres/T for
n � n0 = √

A/δ ∼ (τres/T )−1 and δn = 0 for n > n0, with n0 an integer number
corresponding to the highest harmonic involved in the interaction. Thus, δ̇n ∼ nωδτres/T
up to n = n0 and the sum in equation (2) is truncated at the n0 value; we get

γint ∝ 1

(ωA)2

δ4

A

n0∑
n=1

(nω)2η′(nω). (3)

A second approximation is based on examining the two asymptotic behaviours, fast and
slow relaxation processes, from which power law predictions are readily obtained:

(i) Fast relaxation processes, τsn0ω 	 1 or τs 	 τres: from equation (3) and the expression
for η′(nω) one gets

γint ∝ η
δ5/2

A3/2
. (4)

The prediction corresponding to fast relaxation processes must recover some of the results
obtained when the medium behaves as a liquid. Equation (4) gives the same power laws
as the one derived with the Stokes law for a simple liquid [15]. When the Rouse modes
are included, the indentation depth dependence is more pronounced leading to the power
law δ7/2 [15].

(ii) Slow relaxation processes, τsω 
 1:

γint ∝ η

τ 2
s ω2

δ7/2

A5/2
. (5)

Equations (4) and (5) predict that the power law dependence on the oscillation amplitude
depends on the timescale of the sample characteristic relaxation time. As a result, a simple
algebraic transformation is sufficient to discriminate between the two regimes: fast and slow
relaxation processes. The characteristic times of the relaxation processes involved in the
additional dissipation will be readily identified by multiplying the experimental data by the
power law dependences A3/2 and A5/2. The results are shown in the figures 5 and 6. When
the experimental data are multiplied by A3/2, the low parts of the curves, corresponding to
the small indentations, gather together, showing that the relaxation times of the processes
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Figure 6. The same data as shown in figure 3 with the y axis multiplied by the power law A5/2.
The inset shows a log–log plot of the part of the curves corresponding to the slow relaxation regime.
The slope found is 3.8, in good agreement with the prediction (equation (5)).

induced in the network are much smaller than the residence times. When the experimental
data are multiplied by A5/2, all the abrupt increases of the dissipation align. On increasing the
indentation depth by a fraction of nanometre, the relaxation processes switch from fast to slow
relaxation times. The log–log plot shown in the inset of figure 6 gives a slope of 3.8 in good
agreement with the prediction (equation (5)).

At large indentation depths, the slow relaxation processes prevail. The abrupt variation,
from relaxation processes faster than the microsecond to relaxation processes governed by
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ν0 = 180 kHz, δ = 20 nm, η = 10 Pa s. To calculate the power law, the amplitudes are varied from
A = 20 to 230 nm. For fast relaxation times, τs < 10−8 s, α = 1.46; for slow relaxation times,
τs > 10−5 s, α = 2.37. The numerical values are close to the ones calculated with the simplified
assumptions (equations (4) and (5)): 3/2 and 5/2 respectively.

relaxation times involving the network, occurs within an increase of the indentation depth of
only a few ångströms.

Due to the assumptions employed to verify the amplitude power law dependences on the
asymptotic behaviours, it is worth performing an exact computation. The numerical calculation
is based on equation (2) with the exact Fourier coefficients δn given by

δn = A

π

{
sin[(n − 1)ωτres/2]

n − 1
+

sin[(n + 1)ωτres/2]

n + 1

}
− 2D

π

sin(nωτres/2)

n
. (6)

The numerical calculation is performed up to n = 300. In figure 7 we show the variation
of the exponent of the amplitude power law as a function of the sample relaxation time at
a fixed indentation depth. The numerical results show that relaxation processes lead to a
power law A−1.46 when the relaxation times are of the order of or faster than 10 ns, while
relaxation processes give a power law A−2.37 when the relaxation times are greater than
10−5 ns. Consequently, the experimental results indicate that within a very tiny variation
of the indentation depth (a few ångströms) the relaxation times involved in the dissipation
processes vary by, at least, three orders of magnitude. This abrupt change confirms that the
network contribution prevails in the transition zone.

4. Discussion

For fast relaxation times, i.e. ones for which the network contribution is negligible, the Rouse
model [1] gives an evaluation of the relaxation time of a chain portion with an end to end distance
of 3 nm, just below the mesh size of the network. For the polyisoprene, with a monomeric
friction coefficient of 10−11 N m−1 s [17], one gets τ3 nm = 5 × 10−8 s in agreement with the
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present experimental results. Faster relaxation modes also contribute to dissipation processes;
for example, including the Rouse modes leads to a double sum in equation (3). When the
longest relaxation time is about 10−8 s, the dissipation curve computed numerically with the
double sum and the one calculated with equation (4) give the same evolution. The main
difference concerns numerical factors. In other words a more refined analysis helps one to
obtain more quantitative information, still keeping in mind that the tip shape also matters.

For slower relaxation processes, the contribution of the network connectivity is more
difficult to evaluate because almost nothing is known regarding the dynamical behaviour on
physical entanglement. The reptation time of a polyisoprene chain of molecular weight
205 kDa is deduced from the know value at Mw = 357 kDa, τrep = 1 s [19]. Using
the scaling law τrep ≈ M3.6

w , the reptation time is τrep(Mw = 205 kDa) ≈ 0.14 s. The
shortest network relaxation time can be evaluated with a phenomenological mode analysis [20]:
τnet = τrep/1.5N , where the maximum value N corresponds to the higher mode of the physical
entanglement and is taken to be N = 13. Using N = 13, one gets τnet = 5 × 10−4 s, at least
an order of magnitude greater than the value needed to observe the A−5/2 power law. In the
present state of our experimental results one cannot say whether or not faster relaxation times
are involved in the network. Our data analysis shows that relaxation times of only a few 10 µs
can also produce the power law A−5/2.

The present results indicate that, even at a high excitation frequency and at the molecular
scale, viscoelastic properties can be qualitatively understood with the help of dynamic scaling
laws that discriminate between molecular motion and the influence of the network connectivity.
A more quantitative analysis of the scaling laws would investigate the influence of the mesh
size. This could be done through studies of the effect of the disentanglement (increase of the
mesh size) and the ageing effect (re-formation of the network). Such experiments are currently
under way. The present work shows the ability of an AFM oscillator to discriminate between
the dynamics of a complex system at different scales, in particular when a network structure
induces a long range hydrodynamic interaction.
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[9] Dubourg F, Aimé J P, Couturier G and Salardenne J 2003 Eur. Phys. Lett. 62 671

[10] www.nanoandmore.fr and private communication
[11] Nony L, Cohen-Bouhacina T and Aimé J P 2001 Surf. Sci. 499 152
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